Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Pathogens ; 11(2)2022 Feb 11.
Article in English | MEDLINE | ID: covidwho-2313396

ABSTRACT

INTRODUCTION: Immunocompromised patients are prone to reactivations and (re-)infections of multiple DNA viruses. Viral load monitoring by single-target quantitative PCRs (qPCR) is the current cornerstone for virus quantification. In this study, a metagenomic next-generation sequencing (mNGS) approach was used for the identification and load monitoring of transplantation-related DNA viruses. METHODS: Longitudinal plasma samples from six patients that were qPCR-positive for cytomegalovirus (CMV), Epstein-Barr virus (EBV), BK polyomavirus (BKV), adenovirus (ADV), parvovirus B19 (B19V), and torque teno-virus (TTV) were sequenced using the quantitative metagenomic Galileo Viral Panel Solution (Arc Bio, LLC, Cambridge, MA, USA) reagents and bioinformatics pipeline combination. Qualitative and quantitative performance was analysed with a focus on viral load ranges relevant for clinical decision making. RESULTS: All pathogens identified by qPCR were also identified by mNGS. BKV, CMV, and HHV6B were additionally detected by mNGS, and could be confirmed by qPCR or auxiliary bioinformatic analysis. Viral loads determined by mNGS correlated with the qPCR results, with inter-method differences in viral load per virus ranging from 0.19 log10 IU/mL for EBV to 0.90 log10 copies/mL for ADV. TTV, analysed by mNGS in a semi-quantitative way, demonstrated a mean difference of 3.0 log10 copies/mL. Trends over time in viral load determined by mNGS and qPCR were comparable, and clinical thresholds for initiation of treatment were equally identified by mNGS. CONCLUSIONS: The Galileo Viral Panel for quantitative mNGS performed comparably to qPCR concerning detection and viral load determination, within clinically relevant ranges of patient management algorithms.

2.
Eur J Clin Microbiol Infect Dis ; 42(6): 701-713, 2023 Jun.
Article in English | MEDLINE | ID: covidwho-2253762

ABSTRACT

Rapid identification of the rise and spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern remains critical for monitoring of the efficacy of diagnostics, therapeutics, vaccines, and control strategies. A wide range of SARS-CoV-2 next-generation sequencing (NGS) methods have been developed over the last years, but cross-sequence technology benchmarking studies have been scarce. In the current study, 26 clinical samples were sequenced using five protocols: AmpliSeq SARS-CoV-2 (Illumina), EasySeq RC-PCR SARS-CoV-2 (Illumina/NimaGen), Ion AmpliSeq SARS-CoV-2 (Thermo Fisher), custom primer sets (Oxford Nanopore Technologies (ONT)), and capture probe-based viral metagenomics (Roche/Illumina). Studied parameters included genome coverage, depth of coverage, amplicon distribution, and variant calling. The median SARS-CoV-2 genome coverage of samples with cycle threshold (Ct) values of 30 and lower ranged from 81.6 to 99.8% for, respectively, the ONT protocol and Illumina AmpliSeq protocol. Correlation of coverage with PCR Ct values varied per protocol. Amplicon distribution signatures differed across the methods, with peak differences of up to 4 log10 at disbalanced positions in samples with high viral loads (Ct values ≤ 23). Phylogenetic analyses of consensus sequences showed clustering independent of the workflow used. The proportion of SARS-CoV-2 reads in relation to background sequences, as a (cost-)efficiency metric, was the highest for the EasySeq protocol. The hands-on time was the lowest when using EasySeq and ONT protocols, with the latter additionally having the shortest sequence runtime. In conclusion, the studied protocols differed on a variety of the studied metrics. This study provides data that assist laboratories when selecting protocols for their specific setting.


Subject(s)
COVID-19 , Nanopore Sequencing , Humans , SARS-CoV-2/genetics , COVID-19/diagnosis , Phylogeny , Genome, Viral , High-Throughput Nucleotide Sequencing/methods , Whole Genome Sequencing/methods
3.
Cells ; 11(17)2022 09 02.
Article in English | MEDLINE | ID: covidwho-2009959

ABSTRACT

Virus-specific cellular and humoral responses are major determinants for protection from critical illness after SARS-CoV-2 infection. However, the magnitude of the contribution of each of the components to viral clearance remains unclear. Here, we studied the timing of viral clearance in relation to 122 immune parameters in 102 hospitalised patients with moderate and severe COVID-19 in a longitudinal design. Delayed viral clearance was associated with more severe disease and was associated with higher levels of SARS-CoV-2-specific (neutralising) antibodies over time, increased numbers of neutrophils, monocytes, basophils, and a range of pro-inflammatory cyto-/chemokines illustrating ongoing, partially Th2 dominating, immune activation. In contrast, early viral clearance and less critical illness correlated with the peak of neutralising antibodies, higher levels of CD4 T cells, and in particular naïve CD4+ T cells, suggesting their role in early control of SARS-CoV-2 possibly by proving appropriate B cell help. Higher counts of naïve CD4+ T cells also correlated with lower levels of MIF, IL-9, and TNF-beta, suggesting an indirect role in averting prolonged virus-induced tissue damage. Collectively, our data show that naïve CD4+ T cell play a critical role in rapid viral T cell control, obviating aberrant antibody and cytokine profiles and disease deterioration. These data may help in guiding risk stratification for severe COVID-19.


Subject(s)
COVID-19 , Antibodies, Viral , CD4-Positive T-Lymphocytes , Critical Illness , Humans , SARS-CoV-2
4.
Environ Res ; 211: 113030, 2022 08.
Article in English | MEDLINE | ID: covidwho-1819486

ABSTRACT

BACKGROUND: We recently showed that seasonal patterns of COVID-19 incidence and Influenza-Like Illnesses incidence are highly similar, in a country in the temperate climate zone, such as the Netherlands. We hypothesize that in The Netherlands the same environmental factors and mobility trends that are associated with the seasonality of flu-like illnesses are predictors of COVID-19 seasonality as well. METHODS: We used meteorological, pollen/hay fever and mobility data from the Netherlands. For the reproduction number of COVID-19 (Rt), we used daily estimates from the Dutch State Institute for Public Health. For all datasets, we selected the overlapping period of COVID-19 and the first allergy season: from February 17, 2020 till September 21, 2020 (n = 218). Backward stepwise multiple linear regression was used to develop an environmental prediction model of the Rt of COVID-19. Next, we studied whether adding mobility trends to an environmental model improved the predictive power. RESULTS: Through stepwise backward multiple linear regression four highly significant (p < 0.01) predictive factors are selected in our combined model: temperature, solar radiation, hay fever incidence, and mobility to indoor recreation locations. Our combined model explains 87.5% of the variance of Rt of COVID-19 and has a good and highly significant fit: F(4, 213) = 374.2, p < 0.00001. This model had a better overall predictive performance than a solely environmental model, which explains 77.3% of the variance of Rt (F(4, 213) = 181.3, p < 0.00001). CONCLUSIONS: We conclude that the combined mobility and environmental model can adequately predict the seasonality of COVID-19 in a country with a temperate climate like the Netherlands. In this model higher solar radiation, higher temperature and hay fever are related to lower COVID-19 reproduction, and higher mobility to indoor recreation locations is related to an increased COVID-19 spread.


Subject(s)
COVID-19 , Rhinitis, Allergic, Seasonal , COVID-19/epidemiology , Humans , Netherlands/epidemiology , Pollen , Rhinitis, Allergic, Seasonal/epidemiology , Seasons
5.
Pathogens ; 11(3)2022 Mar 11.
Article in English | MEDLINE | ID: covidwho-1760796

ABSTRACT

Viral metagenomics is increasingly applied in clinical diagnostic settings for detection of pathogenic viruses. While several benchmarking studies have been published on the use of metagenomic classifiers for abundance and diversity profiling of bacterial populations, studies on the comparative performance of the classifiers for virus pathogen detection are scarce. In this study, metagenomic data sets (n = 88) from a clinical cohort of patients with respiratory complaints were used for comparison of the performance of five taxonomic classifiers: Centrifuge, Clark, Kaiju, Kraken2, and Genome Detective. A total of 1144 positive and negative PCR results for a total of 13 respiratory viruses were used as gold standard. Sensitivity and specificity of these classifiers ranged from 83 to 100% and 90 to 99%, respectively, and was dependent on the classification level and data pre-processing. Exclusion of human reads generally resulted in increased specificity. Normalization of read counts for genome length resulted in a minor effect on overall performance, however it negatively affected the detection of targets with read counts around detection level. Correlation of sequence read counts with PCR Ct-values varied per classifier, data pre-processing (R2 range 15.1-63.4%), and per virus, with outliers up to 3 log10 reads magnitude beyond the predicted read count for viruses with high sequence diversity. In this benchmarking study, sensitivity and specificity were within the ranges of use for diagnostic practice when the cut-off for defining a positive result was considered per classifier.

6.
Expert Rev Mol Diagn ; 21(11): 1139-1146, 2021 11.
Article in English | MEDLINE | ID: covidwho-1450340

ABSTRACT

INTRODUCTION: Meningoencephalitis patients are often severely impaired and benefit from early etiological diagnosis, though many cases remain without identified cause. Metagenomics as pathogen agnostic approach can result in additional etiological findings; however, the exact diagnostic yield when used as a secondary test remains unknown. AREAS COVERED: This review aims to highlight recent advances with regard to wet and dry lab methodologies of metagenomic testing and technical milestones that have been achieved. A selection of procedures currently applied in accredited diagnostic laboratories is described in more detail to illustrate best practices. Furthermore, a meta-analysis was performed to assess the additional diagnostic yield utilizing metagenomic sequencing in meningoencephalitis patients. Finally, the remaining challenges for successful widespread implementation of metagenomic sequencing for the diagnosis of meningoencephalitis are addressed in a future perspective. EXPERT OPINION: The last decade has shown major advances in technical possibilities for using mNGS in diagnostic settings including cloud-based analysis. An additional advance may be the current established infrastructure of platforms for bioinformatic analysis of SARS-CoV-2, which may assist to pave the way for global use of clinical metagenomics.


Subject(s)
Genome, Viral/genetics , Meningoencephalitis/diagnosis , Meningoencephalitis/virology , Metagenome/genetics , Diagnostic Tests, Routine , Humans , Metagenomics/methods
7.
J Clin Virol ; 131: 104594, 2020 Oct.
Article in English | MEDLINE | ID: covidwho-726610

ABSTRACT

INTRODUCTION: The SARS-CoV-2 pandemic of 2020 is a prime example of the omnipresent threat of emerging viruses that can infect humans. A protocol for the identification of novel coronaviruses by viral metagenomic sequencing in diagnostic laboratories may contribute to pandemic preparedness. AIM: The aim of this study is to validate a metagenomic virus discovery protocol as a tool for coronavirus pandemic preparedness. METHODS: The performance of a viral metagenomic protocol in a clinical setting for the identification of novel coronaviruses was tested using clinical samples containing SARS-CoV-2, SARS-CoV, and MERS-CoV, in combination with databases generated to contain only viruses of before the discovery dates of these coronaviruses, to mimic virus discovery. RESULTS: Classification of NGS reads using Centrifuge and Genome Detective resulted in assignment of the reads to the closest relatives of the emerging coronaviruses. Low nucleotide and amino acid identity (81% and 84%, respectively, for SARS-CoV-2) in combination with up to 98% genome coverage were indicative for a related, novel coronavirus. Capture probes targeting vertebrate viruses, designed in 2015, enhanced both sequencing depth and coverage of the SARS-CoV-2 genome, the latter increasing from 71% to 98%. CONCLUSION: The model used for simulation of virus discovery enabled validation of the metagenomic sequencing protocol. The metagenomic protocol with virus probes designed before the pandemic, can assist the detection and identification of novel coronaviruses directly in clinical samples.


Subject(s)
Coronavirus Infections/virology , Genome, Viral , High-Throughput Nucleotide Sequencing , Metagenomics , Pneumonia, Viral/virology , Betacoronavirus/isolation & purification , COVID-19 , COVID-19 Testing , Clinical Laboratory Techniques/methods , Computational Biology , Coronavirus Infections/diagnosis , Humans , Middle East Respiratory Syndrome Coronavirus/isolation & purification , Nasopharynx/virology , Pandemics , Severe acute respiratory syndrome-related coronavirus/isolation & purification , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL